Finite difference method of fractional parabolic partial differential equations with variable coefficients
نویسندگان
چکیده
منابع مشابه
Finite difference method for solving partial integro-differential equations
In this paper, we have introduced a new method for solving a class of the partial integro-differential equation with the singular kernel by using the finite difference method. First, we employing an algorithm for solving the problem based on the Crank-Nicholson scheme with given conditions. Furthermore, we discrete the singular integral for solving of the problem. Also, the numerical results ob...
متن کاملLinear fractional differential equations with variable coefficients
This work is devoted to the study of solutions around an α-singular point x0 ∈ [a, b] for linear fractional differential equations of the form [Lnα(y)](x) = g(x, α), where [Lnα(y)](x) = y(nα)(x)+ n−1 ∑ k=0 ak(x)y (kα)(x) with α ∈ (0, 1]. Here n ∈ N , the real functions g(x) and ak(x) (k = 0, 1, . . . , n−1) are defined on the interval [a, b], and y(nα)(x) represents sequential fractional deriva...
متن کاملA finite difference technique for solving variable-order fractional integro-differential equations
In this article, we use a finite difference technique to solve variable-order fractional integro-differential equations (VOFIDEs, for short). In these equations, the variable-order fractional integration(VOFI) and variable-order fractional derivative (VOFD) are described in the Riemann-Liouville's and Caputo's sense,respectively. Numerical experiments, consisting of two exam...
متن کاملAPPROXIMATION OF STOCHASTIC PARABOLIC DIFFERENTIAL EQUATIONS WITH TWO DIFFERENT FINITE DIFFERENCE SCHEMES
We focus on the use of two stable and accurate explicit finite difference schemes in order to approximate the solution of stochastic partial differential equations of It¨o type, in particular, parabolic equations. The main properties of these deterministic difference methods, i.e., convergence, consistency, and stability, are separately developed for the stochastic cases.
متن کاملFinite Difference Approximation of a Parabolic Problem with Variable Coefficients
(1.1) ‖u− v‖Wk p (ω) 6 Ch ‖u‖W s p (Ω), s > k, are of great interest (see [6, 13]). Here u = u(x) denotes the solution of the BVP, v denotes the solution of the corresponding FDS, h is the discretization parameter, W k p (ω) is the Sobolev space of mesh functions, and C is a positive generic constant, independent of h and u. In the parabolic case, instead of (1.1) it is natural to look for erro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Contemporary Mathematical Sciences
سال: 2014
ISSN: 1314-7544
DOI: 10.12988/ijcms.2014.411118